C#, Generics, and Optimizers

Generics are a handy feature of many languages. C# has had them since version 2.0. In some circumstances, their performance impact is minimal. In others, using them can cause significant slowdowns. Here is an example of the latter.

My matrix interface requires an indexer. Indexers can adversely effect performance, so my matrix classes have indexer versions of each of the multiplication methods for benchmarking purposes. This was done even though the code is shared, as I suspected there would be a performance price for using generics.

Having determined the performance cost of indexers, I decided to convert the methods to generics. I thought the additional cost of generics would be fairly low and it would be handy to easily multiply different matrix classes. The methods went from this format:

public MatrixAA Multiply(MatrixAA multiplier) { .... }

to this:

public static U Multiply<U, V>(U matrixA, V matrixB)
    where U:IMatrix<U>, new()
    where V:IMatrix<V> { .... }

The interface itself uses generics as the required methods must return their own type. New() is required for U so the product matrix can be created.

The performance hit was incredible. The above generic is 82% slower than the non-generic. The parallel version is 65% slower. More sophisticated multiplication methods show similar degradation.

Ildasm‘s disassemblies of the generic and non-generic versions of the method imply the issue is either the use of an interface or the use of a generic interface. The non-generic version compiles to late-bound calls to MatrixAA.get_Item(). The generic version compiles to late-bound calls to IMatrix<U>.get_Item() and IMatrix<V>.get_Item().

The speed difference could be the overhead of getting from IMatrix<U>.get_Item() to MatrixAA.get_Item() at run-time. Or the JIT optimizer has trouble optimizing the generic version of the call. Either way, the performance loss is too great for me to use the generic versions. The indexer methods need to show the cost of using an indexer, not the cost of using generics in this situation.

One thought on “C#, Generics, and Optimizers

  1. Pingback: C++, Templates, and Optimizers | Jon Paul Baker

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s